reflexions predicted for the L-Ta₂O₅ structure are 080, 0,14,0, 0,30,0 etc. In α -UO₃ on the other hand the reflexions with observable intensity in the electron diffraction patterns are 090, 0,13,0, 0,31,0 etc. However, slight alteration in the y coordinates of some of the metal atoms is sufficient to effect this change in intensities. The neutron diffraction pattern for α -UO₃ was also calculated assuming the atom positions in L-Ta₂O₅ (except for the proportion of oxygen atoms displaced in the z direction because of the presence of uranium vacancies) but with occupation parameters modified to allow for the missing uranium atoms and in accordance with one distortion plane per unit cell. The correlation was rather poor R(I) = 0.17 but relaxation of uranium atoms in the [100] direction to correspond more closely to an ideal hexagonal arrangement reduced the R index to 0.09. A full refinement of such a large cell is impracticable from powder data but the indications from both the neutron and the electron diffraction experiments are that in α -UO₃ the position of the metal atoms approximate more closely to hexagonal symmetry than in L-Ta₂O₅.

We are grateful to the Science Research Council and A.E.R.E. Harwell for providing neutron diffraction facilities and one of us (CG) wishes to thank the S.R.C. for the provision of a studentship. We thank the University Support Group at A.E.R.E. Harwell for experimental assistance and P. J. Wiseman for the use of the computer program.

References

- ANDRESEN, A. F. (1958). Acta Cryst. 11, 612.
- ATOJI, M. (1966). Acta Cryst. 20, 587.
- CARNALL, W. T., WALKER, A. & NEUFELDT, S. J. (1966). Inorg. Chem. 5, 2135.
- CORDFUNKE, E. H. P. (1961). J. Inorg. Nucl. Chem. 23, 285.
- HOEKSTRA, H. R. & SIEGEL, S. (1961). J. Inorg. Nucl. Chem. 18, 154.
- HYDE, B. G. (1971). Acta Cryst. A27, 617.
- JONES, L. H. (1959). Spectrochim. Acta, 15, 409.
- LOOPSTRA, B. O. (1964). Acta Cryst. 17, 651.
- LOOPSTRA, B. O. (1970). J. Appl. Cryst. 3, 94.
- LOOPSTRA, B. O. & CORDFUNKE, E. H. P. (1966). Rec. Trav. Chim. Pays-Bas, 85, 135.
- THE NEUTRON DIFFRACTION COMMISSION (1969). Acta Cryst. A 25, 391.
- ROTH, R. S. & STEPHENSON, N. C. (1969). The Chemistry of Extended Defects in Non-Metallic Solids. Amsterdam: North Holland.
- SIEGEL, S. & HOEKSTRA, H. R. (1971). Inorg. & Nucl. Chem. Letters, 7, 497.
- STEPHENSON, N. C. & ROTH, R. S. (1971). Acta Cryst. B27, 1010, 1018, 1031, 1037.
- WILLIS, B. T. M. (1963). Proc. Roy. Soc. A 274, 122.
- ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 265.

Acta Cryst. (1972). B28, 3614

The Crystal Structure of Hanksite, KNa₂₂[Cl(CO₃)₂(SO₄)₉] and its Relation to the K₂SO₄ I Structure Type

BY K. KATO AND H. SAALFELD

Mineralogisch-Petrographisches Institut der Universität Hamburg, Germany (BRD)

(Received 24 July 1972)

The crystal structure of hanksite, $KNa_{22}[Cl(CO_3)_2(SO_4)_9]$, has been determined by three-dimensional X-ray analysis and refined by least-squares methods, using anisotropic thermal parameters; final R = 0.034. The crystals are hexagonal ($P6_3/m$): a = 10.490, c = 21.240 Å, Z = 2. The structure exhibits an ordered distribution of both SO₄ tetrahedra and CO₃ groups. The results of heating experiments are presented and similarities to a hexagonal phase of the solid solution series $Ca_2SiO_4-Ca_3(PO_4)_2$ with respect to the K_2SO_4 I structure type are discussed.

Introduction

The mineral hanksite, $\text{KNa}_{22}[\text{Cl}(\text{CO}_3)_2(\text{SO}_4)_9]$, belongs to the sulphates containing CO₃ groups. Ramsdall (1939) found hexagonal symmetry with the unit-cell dimensions a=10.46 Å, c=21.18 Å. $P6_3$ and $P6_3/m$ are proposed as possible space groups. A structure determination has, however, not been attempted. Furthermore Ramsdell (1939) found that the diffraction pattern of the high-temperature hexagonal $Na_2SO_4-Na_2CO_3$ series resembles the hanksite pattern. Additional reflexions indicate that the unit cell of hanksite has a *c* axis three times and an *a* axis twice the size of those of the $Na_2SO_4-Na_2CO_3$ series, or of Na_2SO_4 I. Eysel (1971) believes that hanksite is a variety of the hexagonal K_3SO_4 I structure type (hightemperature form, space group $P6_3mc$) with nonidentical unit cell. A unit cell similar to that of hanksite with corresponding cell dimensions has been detected (Saalfeld, 1971) in the solid solution series Ca₂SiO₄-Ca₃(PO₄)₂. In order to get further information on the crystallographic relations of these compounds the structure determination of hanksite was carried out. Kato (1972) has recently published preliminary results of this investigation.

Experimental

A crystal sphere ($\emptyset = 0.2 \text{ mm}$), ground from a hanksite sample from Searles Lake, San Bernardino County, California, was used for the determination of the lattice constants and the intensity measurements. The following unit-cell parameters were obtained by a least-squares adjustment of high angle Cu K α reflexions: $a=10.490 \pm 0.001$, $c=21.240 \pm 0.001$ Å. There are two formula weights per unit cell. The intensity measurements of 1535 reflexions were carried out on an automated Siemens diffractometer with Cu K α radiation. Corrections for absorption ($\mu R = 1.07$) and extinction were applied. The N(z) test (Howells, Phillips & Rogers, 1950) suggested the space group $P6_3/m$.

Heating experiments show that hanksite decomposes above 700 °C forming hexagonal solid-solution crystals, Na₂SO₄ V and NaCl. The hexagonal phase has the lattice parameters a=5.340, c=7.110 Å (space group $P6_{3}mc$) and is identical with the K₂SO₄ I type.

Structure determination and refinement of hanksite

On the basis of the chemical composition and the space group symmetry a model of the structure was proposed. The orientation of the SO_4 tetrahedra and CO_3 groups was found by the 'refinement of rigid-body groups' (Scheringer, 1965). After some cycles of least-squares refinement (Busing, Martin & Levy 1962) with anisotropic thermal parameters and isotropic extinction corrections (Zachariasen, 1967, 1968) all atoms could be located. The *R* index was reduced to 0.034. The scattering factors for the atoms were taken from Hanson, Herman, Lea & Skillman (1964). The atomic parameters in Table 2 and the observed and calculated structure factors in Table 3.

Discussion

The structure of hanksite (Fig. 1) consists of isolated SO₄ tetrahedra, 12 of which are located in general position with a strong tilt with regard to the sixfold axis. The remaining six tetrahedra lie in the basal mirror planes at $z = \frac{1}{4}$ and $z = \frac{3}{4}$. The CO₃-group positions are threefold. The atomic distances and bond angles of the anionic groups are listed in Table 4. The SO₄ tetrahedra are not regular but somewhat distorted. Baur (1964) and Larson (1965) have tabulated the

Table 1. Final positional parameters $(\times 10^5)$

The standard deviations are given in parentheses in units of the last decimal place.

	Position	x	У	z
Na(1)	12(i)	17859 (10)	36108 (9)	7435 (4)
Na(2)	12(i)	47753 (10)	- 5305 (10)	16093 (3)
Na(3)	6(ĥ)	34702 (14)	14658 (13)	1*
Na(4)	6(g)	$\frac{1}{2}*$	0	Ó
Na(5)	4(f)	2*	1*	12453 (6)
Na(6)	4(e)	Ŏ	Õ	17343 (6)
ĸ`́	2(b)	0	0	0
C	4(f)	1*	2*	6968 (11)
Ō(1)	12(i)	38952 (18)	11372 (17)	14331 (6)
O(2)	12(i)	32254 (16)	7997 (16)	3420 (6)
O(3)	12(i)	44832 (16)	32454 (15)	8017 (6)
O (4)	12(i)	19578 (15)	15492 (16)	10588 (6)
O(5)	12(i)	19815 (18)	42962 (18)	19287 (6)
O(6)	12(i)	40396 (15)	80833 (14)	6986 (5)
O(7)	6(h)	9206 (22)	19996 (21)	<u>+</u> *
O (8)	6(h)	35549 (23)	36790 (23)	<u>+</u> *
S(Ì)	12(i)	33868 (5)	16841 (5)	9082 (2)
S(2)	6(h)	20856 (7)	35652 (8)	<u>+</u> *
CÌ	2(d)	2*	3	1 4*

* These values are not $\times 10^5$.

Table 2. Anisotropic thermal parameters $(\times 10^4)$

Temperature factors are of the form exp $[-(h^2\beta_{11}...2kl\beta_{23})]$. Standard deviations are equal to or smaller than ± 0.0003 .

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Na(1)	56	40	16	22	-3	-1
Na(2)	61	67	10	38	-3	- 3
Na(3)	88	57	10	35	0	0
Na(4)	50	47	8	20	0	3
Na(5)	55	55	14	28	0	0
Na(6)	54	54	9	27	0	0
КÌ́	55	55	8	27	0	0
С	39	39	4	20	0	0
Ō(1)	90	71	10	54	-1	5
O(2)	74	59	10	35	0	-6
O (3)	59	40	13	13	-1	4
O(4)	49	68	14	35	6	4
O(5)	77	72	15	35	- 7	10
O(6)	46	31	10	15	1	1
O(7)	56	41	11	11	0	0
O(8)	60	68	12	36	0	0
S(1)	33	26	6	15	1	1
S(2)	33	30	8	16	0	0
CÌ	80	80	11	40	0	0

S-O distances and bond angles of different sulphate structures. The variation interval for the S-O distances and O-S-O angles of the hanksite tetrahedra is very narrow and agrees well with values mentioned in the literature. The Cl ions are in special positions with point symmetry $\overline{6}$. The distances from a Cl ion to the next two Na(5) and three Na(3) are 2.665 and 2.918 Å respectively. The K ions are surrounded by six nearest oxygen neighbours at a distance of 2.929 Å and six other oxygens at a distance of 3.137 Å. The geometry about the Na ions is distorted octahedral with Na-O distances ranging from 2.288 to 2.687 Å. Only Na(3) has four nearest oxygen neighbours in tetrahedral arrangement with an average distance of 2.537 Å.

Table 3. Observed and calculated structure factors

・「「「「「」」」」」」」」」」」「「「」」」」」「「」」」」」」「「」」」」」」	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	а. 19. м. 18. м. 19. м. 19 19. м. 19. m. 19. m 19. m. 19. m. 19		มา"รมริติชี้ขั้นชี้มร้างสระสากการสระสองกาญ ที่มาการรรมการการการการการการสระระจากการการสระสะรากการสระสะการการสร การสระสงการการการการการการการการการการการการการก	กรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรร	ายากการสารสรรรรรรรรรรรรรรรรรรรรรรรรรรรรร	いたな、おかったいないないないないないないないないない。「ないないないないないないないないないな	お子様がなくなくなくないのいろうからないないないで、たちないのないないないで、「おおいない」としていたいではないないないのでしたいではないないでいったいないないでした。そうないで、「いっていたい」では、 1995年1997年1997年1997年1997年1997年1997年1997年	おお。おけのないためにあるようなが、「なおおいのおからないよない。 オメック、「ようというないない」」、「ないないではないないないない」、たいないない、たいないない、たいし、ないない、「ないない」、 しょうない、「ないない」、「ないない」、たいない、「ないない」、「ないないない」、「ないない」、「ないない」、「ないない」、「ないない」、「ないない」、「ないない」、「ないない」、「ないないない」、「ないないない」、「ないないない」、「ないないない」、「ないないないないない」、「ないない、「ないない」、「ないないないないないないないないないないないないないないないないないないない	33 13 年末11月20日1日の日本のあったのようななないでした。11日の日本のようにないたいないでした。11日の日本のないたいたいたいではないたいたいでは、11日に、11日に、12日、11日の11日の日本のあったのではないたいでは、11日、11日に、12日、11日の11日の日本のあったのではないたいでは、11日、11日に、12日、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本の 11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本のあったのでは、11日の11日の日本の	рляляяльнополотического с оттакального соронального соронального соронала солости и солостического соронала со Влястярияляется солосто с оттакального соронального соронального соронального солости солосто солость сого соло Остакальности солости с оттакального соронального соронального соронального солости. По солости солость сого со	руунун жилин талан та 1977 талан тала 1977 талан тала 1977 талан тала 1977 талан тал	1 0 45 47 3 0 45 47 3 0 45 47 3 0 45 47 4 0 45 47 1 0 22 22 1 0 2 22 22 1 0 22 22
			/	К 0(4	0(7)	Na(1)		}9	0-1-02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

Fig. 1. Structure of hanksite (c-axis projection).

Table 4. Interatomic distances and bond angles

The standard deviations are equal to or smaller than ± 0.0028 Å for the bond lengths and equal to or smaller than $\pm 0.13^{\circ}$ for the bond angles.

(a) Tetrahedu	al groups			
S(1) - O(1)	1·470 Å	Range of	6 O-O	2·389–2·427 Å
S(1) - O(2)	1.476	Mean of	6 O-O	2.404
S(1) - O(3)	1.474	Range of	6 O-S-O	108·4–110·7°
S(1)-O(4)	1.469	Mean of	6 O-S-O	109.5
Mean of 4	1.472			
S(2)-O(5)	1·468 Å	Range of	6 0-0	2·384–2·427 Å
S(2) - O(5')	1.468	Mean of	6 0-0	2 ·408
S(2) - O(7)	1.478	Range of	6 O-S-O	107·6–111·5°
S(2)-O(8)	1.485	Mean of	6 O-S-O	109.5
Mean of 4	1.475			
(b) Carbonat	e group	(c) Na-	Cl distance	es
C-O(6)	1.287	Å N	a(3)–Cl	2·918 Å
.,		N	a(5)–Cl	2.665
(d) Cation-o	xygen distan	ces		
KO(4)	2·929 Å	, I	Na(3)-O(1)	2·368 Å
KO(2)	3.137	I	Na(3) - O(7)	2.994
Na(1) - O(4)	2.355	1	Na(3)–O(8)	2.279
Na(1) - O(5)	2.598	1	Va(3)-O(7') 2.506
Na(1) - O(6)	2.397	1	Na(4) - O(2)	2.502
Na(1) - O(6')	2.420	1	Na(4) - O(6)	2.288
Na(2) - O(1)	2 ·381	1	Na(5) - O(1)	2.687
Na(2)-O(6)	2.309	1	Na(5)-O(3)	2.435
		1	Na(6)–O(4)	2.362
		1	Na(6)-O(7)	2.440

The superstructure of low-temperature hanksite can be explained by ordered distribution of CO₃ groups, K and Cl ions and the arrangement of the tilted SO₄ tetrahedra. A similar type of ordering is found in the structure of a PO₄-containing phase of Ca₂SiO₄, where the high-temperature form is isostructural with K₂SO₄ I. The low temperature form shows a hexagonal superstructure with the space group $P6_1$. This superstructure (a = 10.76, c = 21.73 Å) which is comparable with hanksite, is caused by an ordered distribution of SiO₄ and PO₄ groups. The structure determination (Jarchow & Saalfeld, in preparation) revealed that as with hanksite the tetrahedra are tilted with respect to the sixfold axis. Other structural relationships, however, do not exist due to the difference in chemical composition and space group symmetry.

Eysel (1971) discusses the distribution of $[XO_4]$ tetrahedra and planar [XO₃] groups in solid-solution series of compounds crystallizing in the K₂SO₄ I type. A statistical distribution should not affect magnitude and symmetry of the unit cell. By ordering of the atomic groups, however, new periodicities can occur in connexion with supercells and change in symmetry. Hanksite serves well to illustrate this possibility. In the low-temperature form all atoms occupy definite positions and a superstructure results. At high temperatures the decomposition product consists mainly of a hexagonal phase with unit-cell and space-group symmetry comparable with K_2SO_4 I. A statistical distribution of SO₄ and CO₃ groups must be assumed. As in K_2SO_4 I the SO₄ tetrahedra can no longer be tilted with regard to the c axis. A detailed structure determination is in preparation.

The authors wish to express their thanks to the 'Deutsche Forschungsgemeinschaft' for support which has made this work possible.

References

BAUR, W. (1964). Acta Cryst. 17, 1361.

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Eysel, W. (1971). Habilitationsschrift, T. H. Aachen.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.
- KATO, K. (1972). Naturwiss. 59, 269
- LARSON, A. C. (1965). Acta Cryst. 18, 717.
- RAMSDELL, L. S. (1939). Amer. Min. 24, 109.
- SAALFELD, H. (1971). Ber. Dtsch. Keram. Gesell. 48, 435.
- SCHERINGER, C. (1965). Acta Cryst. 19, 513.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A24, 212.